Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Уральский технический институт связи и информатики (филиал) в г. Екатеринбурге (УрТИСИ СибГУТИ)

> **УТВЕРЖДАЮ** директор УрТИСИ СибГУТИ Минина Е.А. «27» декабря 2024 г.

ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ **АТТЕСТАЦИИ**

по дисциплине Б1.В.01 Основы теории цепей

Направление подготовки / специальность: 11.03.02 «Инфокоммуникационные

технологии и системы связи»

Направленность (профиль) /специализация: Инфокоммуникационные

технологии в услугах связи

Форма обучения: очная

Год набора: 2025

Разработчик (-и):

доцент

/ E.C. Tapacos /

Оценочные средства обсуждены и утверждены на заседании инфокоммуникационных технологий и мобильной связи (ИТиМС)

Протокол от 27.11.2024 г. № 3

Заведующий кафедрой ____

/ Н.В. Будылдина /

подпись

Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Уральский технический институт связи и информатики (филиал) в г. Екатеринбурге (УрТИСИ СибГУТИ)

	УТВЕРЖДАЮ
директор	э УрТИСИ СибГУТИ
	Минина Е.А.
	«27» декабря 2024 г.

ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ **АТТЕСТАЦИИ**

по дисциплине Б1.В.01 Основы теории цепей

Направление подготовки / специальность: 11.03.02 «Инфокоммуникационные

технологии и системы связи»

Направленность (профиль) /специализация: Инфокоммуникационные

технологии в услугах связи		
Форма обучения: очная		
Год набора: 2025		
Разработчик (-и): доцент	подпись	/ E.C. Тарасов /
Оценочные средства обсуждены и утверж, технологий и мобильной связи (ИТиМС) Протокол от 27.11.2024 г. № 3	дены на заседании	инфокоммуникационных
Заведующий кафедрой	/ Н.В. Будылдина /	
полпись		

1. Перечень компетенций и индикаторов их достижения

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Код и наименование компетенции	Код и наименование индикатора достижения компетенций	Этап	Предшествующие этапы (с указанием дисциплин/практик)
ПК-1 — Способен к проведению профилактических работ на оборудовании связи	ПК-1.1 Знает теоретические основы электросвязи и инфокоммуникационных технологий, основы построения взаимоувязанных телекоммуникационных сетей	1	-

Форма промежуточной аттестации по дисциплине – зачет

2. Показатели, критерии и шкалы оценивания компетенций

2.1. Показателем оценивания компетенций на этапе их формирования при изучении дисциплины является уровень их освоения.

Индикатор освоения	Показатель оценивания	Критерий оценивания	
компетенции	,	•	
ПК-1.1 Знает	Результаты обучения:	1. Выполнение всех лабораторных	
теоретические основы	Знает:	работ по дисциплине в соответствии с	
электросвязи и	- основные законы теории	графиком.	
инфокоммуникационных	цепей	2. Грамотное составление и	
технологий , основы	(закон Ома и законы	оформление отчетов по лабораторным	
построения	Кирхгофа);	работам.	
взаимоувязанных	- свойства элементов	3. При защите лабораторных работ,	
телекоммуникационных	электрических цепей при	формулирует выводы по полученным	
сетей	постоянном и	результатам, может сравнить	
	гармоническом	предварительно рассчитанные	
	воздействии;	параметры с параметрами,	
	- методы эквивалентного	полученными в ходе лабораторной	
	преобразования	работы. Знает основные определения и	
	электрических цепей.	законы теории цепей.	
	- методы расчета простых		
	электрических цепей при		
	постоянном и		
	гармоническом		
	воздействии.		
	- свойства		
	последовательных и		
	параллельных		
	электрических цепей при		
	гармоническом		
	воздействии.		
	Умеет:		
	- проводить измерения		
	параметров элементов и		

электрических цепей;	
- рассчитывать простые	
электрические цепи при	
постоянном и	
гармоническом	
воздействии	
- анализировать	
полученные результаты	
измерения и сравнивать с	
расчетными значениями;	
- строить графики по	
рассчитанным и	
измеренным значениям.	
-	
Владеет:	
навыками составления	
технической документации	
на основе проведенных	
измерений и расчетов.	

Шкала оценивания.

Бинарная шкала	Критерии оценки
Зачтено	Самостоятельно и правильно выполнил задания, предусмотренные лабораторными работами. Уверенно, логично, последовательно и аргументировано излагает свое решение и обосновывает применяемые методики измерения, используя понятия, ссылаясь на основные базовые стандарты.
Не зачтено	Не выполнены измерения или они выполнены не правильно, т. е. измеренные значения параметров не совпадают с расчетными. Не сделаны выводы по проделанной работе и не дано обоснование своим решениям и используемым методикам.

3. Методические материалы, определяющие процедуры оценивания по дисциплине

3.1. В ходе реализации дисциплины используются следующие формы и методы текущего контроля

Тема и/или раздел	Формы/методы текущего		
	контроля успеваемости		
ПК-1.1 Знает теоретические основы электросвязи и инфокоммуникационных технологий,			
основы построения взаимоувязанных телекоммуникационных сетей			
Раздел 1 Основные законы и общие методы анализа	Зачет		
электрических цепей.	Лабораторные работы		
Раздел 2 Расчет электрических цепей при постоянном	Зачет		
воздействии.	Лабораторные работы		
Раздел 3 Линейные цепи при гармоническом воздействии	Зачет		
	Лабораторные работы		
Раздел 4 Индуктивно-связанные цепи	Зачет		

3.2. Типовые материалы текущего контроля успеваемости обучающихся

ПК-1.1 Знает теоретические основы электросвязи

Пример задания на лабораторную работу

Цель работы:

Освоение методов расчета и экспериментальная проверка амплитудных соотношений в линейных цепях при гармоническом воздействии. Исследование частотной характеристики простейшей цепи.

Порядок выполнения работы:

- 1. Для последовательной RL цепи рассчитайте: напряжения на элементах последовательной RL цепи, ток, протекающий по цепи, активную, реактивную и полную мощности. Построить векторные диаграммы напряжений и мощностей. Расчет необходимо выполнить для $f=2\kappa\Gamma$ ц и $U_{Bx}=5B$.
- 2. Рассчитайте значения напряжений последовательной RL-цепи, для частот, указанных в таблице 1. Результаты расчетов сведите в таблицу 1, в колонки «Расчетное значение напряжения». Постройте расчетную AЧХ последовательной RL-цепи.
- 3. Измерьте величины сопротивлений R_2 и R_{L3} катушки индуктивности L_3 , сравните их с табличными.
- 4. Соберите схему последовательной RL цепи, используя резистор R_2 , индуктивность L_3 и вольтметр.
 - 5. Установите на генераторе частоту из таблицы 1 и напряжение $U_{\text{вx}}$ =5B.
 - 6. Измерьте напряжение на элементах цепи для частот, указанных в таблице 1.
- 7. Результаты измерений сведите в таблицу 1 в колонки «Измеренное значение напряжения».

Таблица 1 – Результаты расчетов и измерений

Частота	Расчетное значение		Измеренное			
воздействия,	напряже	напряжения, В		напряжения, В н		ния, В
кГц	U_R	U_{L}	U_R	$U_{\rm L}$		
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

- 8. По полученным измеренным значениям, постройте АЧХ последовательной RL-цепи.
- 9. Сравните расчетные и измеренные АЧХ и сделайте вывод об их совпадении.

3.3. Типовые материалы для проведения промежуточной аттестации обучающихся

ПК-1 – Способен к проведению профилактических работ на оборудовании связи

Типовые вопросы и задания к зачету:

- 1. Понятие тока напряжения и мощности. Выбор направления в электрической цепи. Формулы расчета. Единицы измерения. Определение знака мощности. Баланс мощностей в электрических цепях.
- 2. Понятие идеализированного резистивного элемента. Его свойства. Вольт-амперная характеристика. Закон Ома.
- 3. Понятие идеализированного емкостного элемента. Его свойства. Вольт-кулонная характеристика.
- 4. Понятие идеализированного индуктивного элемента. Его свойства. Вебер-амперная характеристика.
- 5. Понятие независимого источника энергии. Идеализированный и реальный источник напряжения. Его свойства. Режимы работы.
- 6. Понятие независимого источника энергии. Идеализированный и реальный источник тока. Его свойства.
- 7. Понятие электрической схемы. Виды электрических схем. Ее элементы, дать определение. Законы Кирхгофа для электрических цепей. Формулы записи. Показать применение на примере схем.
- 8. Последовательное соединение резистивных элементов в электрических цепях. Эквивалентное преобразование.
- 9. Последовательное соединение емкостных элементов в электрических цепях. Эквивалентное преобразование.
- 10. Последовательное соединение индуктивных элементов в электрических цепях. Эквивалентное преобразование.
- 11. Параллельное соединение резистивных элементов в электрических цепях. Эквивалентное преобразование.
- 12. Параллельное соединение емкостных элементов в электрических цепях. Эквивалентное преобразование.
- 13. Параллельное соединение индуктивных элементов в электрических цепях. Эквивалентное преобразование.
- 14. Понятие гармонического колебания. Его параметры. Формулы их расчета. Методы представления гармонических колебаний.
- 15. Резистивный элемент при гармоническом воздействии. Его свойства. Мгновенная и средняя мощность. Векторные диаграммы.
- 16. Емкостной элемент при гармоническом воздействии. Его свойства. Мгновенная, средняя и реактивная мощность. Векторные диаграммы.
- 17. Индуктивный элемент при гармоническом воздействии. Его свойства. Мгновенная, средняя и реактивная мощность. Векторные диаграммы.
- 18. RL цепь при гармоническом воздействии. Характеристики цепи. Виды мощностей. Векторная диаграмма.
- 19. RC цепь при гармоническом воздействии. Характеристики цепи. Виды мощностей. Векторная диаграмма.
- 20. Последовательная RLC цепь при гармоническом воздействии. Характеристики цепи. Виды мощностей. Векторная диаграмма.
- 21. Параллельная RLC цепь при гармоническом воздействии. Характеристики цепи. Виды мощностей. Векторная диаграмма.

Банк контрольных вопросов, заданий и иных материалов, используемых в процессе процедур текущего контроля и промежуточной аттестации находится в учебно-методическом комплексе дисциплины и/или представлен в электронной информационно-образовательной среде по URI: http://www.aup.uisi.ru/.

3.4. Методические материалы проведения текущего контроля и промежуточной аттестации обучающихся

Перечень методических материалов для подготовки к текущему контролю и промежуточной аттестации:

1. Методические указания к выполнению лабораторных работ по дисциплине «Основы теории цепей». –URL: http://aup.uisi.ru/3558494/.