Приложение 1 к рабочей программе по дисциплине ОУД.10 Физика

Федеральное агентство связи Уральский технический институт связи и информатики (филиал) ФГБОУ ВО «Сибирский государственный университет телекоммуникаций и информатики» в г. Екатеринбурге (УрТИСИ СибГУТИ)

Оценочные средства текущего контроля и промежуточной аттестации по общеобразовательной учебной дисциплине

ОУД.10 ФИЗИКА

для специальности: 09.02.03 «Программирование в компьютерных системах»

Приложение 1 к рабочей программе по дисциплине ОУД.10 Физика

Федеральное агентство связи Уральский технический институт связи и информатики (филиал) ФГБОУ ВО «Сибирский государственный университет телекоммуникаций и информатики» в г. Екатеринбурге (УрТИСИ СибГУТИ)

УT	ВЕРЖД	ĮAЮ	
Диј	ректор У	ртиси Сибгути	[
		Е.А. Минин	на
«	>>	20	Γ.

Оценочные средства текущего контроля и промежуточной аттестации по общеобразовательной учебной дисциплине

ОУД.10 ФИЗИКА

для специальности: 09.02.03 «Программирование в компьютерных системах»

Одобрено цикловой комиссией Математики и естественных дисциплин кафедры Высшей математики и физики. Протокол м от 03.09.20202 Председатель цикловой комиссии А.А. Чиркова

Согласовано:
Начальник Учебного управления
______ А.Н. Белякова

Составитель: Корякова И.П. - преподаватель ЦК МиЕД кафедры ВМиФ

Рецензент: Куанышев В.Т. - к.ф.-м.н., доцент кафедры ВМиФ

Одобрено цикловой комиссией	Согласовано:
Математики и естественных	Начальник Учебного управления
дисциплин кафедры	А.Н. Белякова
Высшей математики и физики.	
Протокол от	
Председатель цикловой комиссии	
А.А. Чиркова	
Составитель: Корякова И.П преподан	затель ЦК МиЕД кафедры ВМиФ

Рецензент: Куанышев В.Т. - к.ф.-м.н., доцент кафедры ВМиФ

Содержание

1 Требования к освоению учебной дисциплины	4
2 Результаты освоения учебной дисциплины	4
3 Текущий контроль знаний и умений обучающихся	5
3.1 Формы и методы текущего контроля	5
3.2 Лабораторные работы	6
3.3 Практические занятия	6
3.4 Самостоятельные работы	7
3.5 Тестовые задания	8
4 Промежуточная аттестация обучающихся	9
4.1 Формы и методы промежуточной аттестации	9
4.2 Аттестация по текущей успеваемости	9
4.3 Экзамен	9
Литература	13
Регистрация изменений в оценочных средствах текущего контроля и	15
промежуточной аттестации по учебной дисциплине	

1 Требования к освоению учебной дисциплины

Для контроля и оценки образовательных достижений обучающихся, осваивающих программу общеобразовательной учебной дисциплины «Физика» предназначены оценочные средства.

Оценочные средства включают контрольные материалы для проведения текущего контроля знаний обучающихся и промежуточной аттестации.

Формами промежуточной аттестации по учебной дисциплине «Физика» являются:

- аттестация по текущей успеваемости в 1 семестре;
- экзамен во 2 семестре.

2 Результаты освоения учебной дисциплины

Освоение содержания учебной дисциплины «Физика» обеспечивает достижение обучающимися следующих *результатов*:

• личностных:

- чувство гордости и уважения к истории и достижениям отечественной физической науки; физически грамотное поведение в профессиональной деятельности и быту при обращении с приборами и устройствами;
- готовность к продолжению образования и повышения квалификации в избранной профессиональной деятельности и объективное осознание роли физических компетенций в этом;
- умение использовать достижения современной физической науки и физических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;
- умение самостоятельно добывать новые для себя физические знания, используя для этого доступные источники информации;
- умение выстраивать конструктивные взаимоотношения в команде по решению общих задач:
- умение управлять своей познавательной деятельностью, проводить самооценку уровня собственного интеллектуального развития;

• метапредметных:

- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: постановки задачи, формулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации, выявления причинно-следственных связей, поиска аналогов, формулирования выводов для изучения различных сторон физических объектов, явлений и процессов, с которыми возникает необходимость сталкиваться в профессиональной сфере;
- умение генерировать идеи и определять средства, необходимые для их реализации;

- умение использовать различные источники для получения физической информации, оценивать ее достоверность;
 - умение анализировать и представлять информацию в различных видах;
- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;

• предметных:

- сформированность представлений о роли и месте физики в современной научной картине мира; понимание физической сущности наблюдаемых во Вселенной явлений, роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;
- владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное использование физической терминологии, символики;
- владение основными методами научного познания, используемыми в физике: наблюдением, описанием, измерением, экспериментом;
- умения обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
 - сформированность умения решать физические задачи;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе, профессиональной сфере и для принятия практических решений в повседневной жизни;
- сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

3 Текущий контроль знаний и умений обучающихся

3.1 Формы и методы текущего контроля

В ходе текущего контроля знаний и умений обучающихся по дисциплине «Физика» применяются следующие формы и методы контроля и оценки:

- защита лабораторных работ в форме устного ответа;
- проверка отчетов по лабораторным работам;
- проверка отчетов по практическим занятиям;
- проверка выполнения самостоятельных работ;
- проверка теоретических знаний по дисциплине в форме тестирования.

Задания, используемые для проведения текущего контроля, отражаются в методических указаниях:

- 1 Корякова И. П. Физика [Текст] : методические указания по выполнению лабораторных работ / И. П. Корякова. Екатеринбург : Изд-во УрТИСИ СибГУТИ, 2020. 12 с.
- 2 Корякова И. П. Физика [Текст] : методические указания по выполнению практических занятий / И. П. Корякова. Екатеринбург : Изд-во УрТИСИ СибГУТИ, 2020. 61 с.

- 3 Корякова И. П. Физика [Текст] : методические указания по выполнению самостоятельных работ / И. П. Корякова. Екатеринбург : Изд-во УрТИСИ СибГУТИ, 2020. 18 с.
- 4 Корякова И. П. Физика [Текст] : тесты с разбивкой на дидактические единицы / И. П. Корякова. Екатеринбург : Изд-во УрТИСИ СибГУТИ, 2020. 31 с.

3.2 Лабораторные работы

Перечень лабораторных работ, в ходе которых проверяются знания и умения обучающихся, приведен в таблице 1.

Таблица 1

№ лаб. работы	Наименование лабораторной работы
1,2	Определение плотности тел правильной формы.

Критерии оценки освоения

Объем и качество освоения обучающимися лабораторной работы, уровень сформированности знаний и умений оцениваются по результатам проверки отчетов и ответов на вопросы преподавателя.

«Зачет» ставится в том случае, если:

- расчетная часть лабораторной работы в целом выполнена верно;
- конспект материала выполнен в полном объеме;
- качество оформления отчета соответствует предъявляемым требованиям;
- при защите лабораторной работы обучающийся в основном дает верные ответы на вопросы преподавателя.

«Незачет» ставится, если:

- расчетная часть лабораторной работы выполнена частично или с грубыми ошибками;
 - конспект материала выполнен не в полном объеме или отсутствует;
- качество оформления отчета не соответствует предъявляемым требованиям;
- при защите лабораторной работы обучающийся дает не верные ответы на вопросы преподавателя.

3.3 Практические занятия

Перечень практических занятий, в ходе которых проверяются знания и умения обучающихся, приведен в таблице 2.

Таблица 2

№ практ занятия	Наименование практических занятий
1,2	Кинематика материальной точки. Кинематика вращательного движения.
3,4	Законы Ньютона.
5	Работа силы.

Продолжение таблицы 2

1	
6	Мощность.
7,8	Закон сохранения импульса. Закон сохранения механической энергии.
9,10	Уравнение Менделеева-Клапейрона. Основное уравнение молекулярно-кинети-
	ческой теории.
11,12	Изопроцессы в идеальном газе.
13	Применение первого закона термодинамики к изопроцессам.
14,15	Закон Кулона. Напряженность системы точечных зарядов.
16	Расчет электростатических полей с помощью теоремы Гаусса.
17,18	Потенциал системы точечных зарядов. Связь потенциала с напряженностью
	поля. Работа поля по перемещению заряда.
19	Электроемкость конденсаторов.
20	Законы постоянного тока.
21	Последовательное и параллельное соединение проводников.
22	Магнитное поле тока. Токи в магнитном поле.
23	Движение заряженных частиц в магнитном поле.
24	Механические колебания.
25	Основные характеристики электромагнитных колебаний.
26	Механические и электромагнитные волны.
27	Отражение и преломление света.
28	Интерференция света.
29	Дифракция света.

Критерии оценки освоения

Объем и качество освоения обучающимися практического занятия, уровень сформированности знаний и умений оцениваются по результатам проверки выполненных задач.

Оценка «отлично» ставится в том случае, если:

- практическая работа выполнена в полном объеме с соблюдением необходимой последовательности решений задач.

Оценка «хорошо» ставится в том случае, если:

- в представленном отчете по практической работе допущены недочеты или ошибки в решении задач, но не более чем в 20% от всех заданий.

Оценка «удовлетворительно» ставится в том случае, если:

- практическая работа выполнена не полностью, но объем правильно выполненной части более 50% от всех заданий.

Оценка «неудовлетворительно» ставится в том случае, если:

- практическая работа выполнена не полностью, объем правильно выполненной части менее 50% от всех предложенных заданий.

3.4 Самостоятельные работы

Перечень тем самостоятельных работ приведен в таблице 3.

Таблица 3

№ сам. работы	Наименование темы самостоятельной работы	
1	Раздел 1 «Механика».	
2	Раздел 2 «Основы молекулярной физики и термодинамики».	

Продолжение таблицы 3

3	Раздел 3 «Электродинамика».
4	Раздел 4 «Колебания и волны».
5	Раздел 5 «Оптика».
6	Раздел 6 «Элементы квантовой физики».

Критерии оценки освоения

Объем и качество выполнения обучающимися самостоятельных работ, уровень сформированности знаний и умений оцениваются по результатам выполненных заданий (подготовка ответов на контрольные вопросы лабораторных работ и практических занятий, решение задач).

Оценка «*отпично*» ставится в том случае, если:

- самостоятельная работа выполнена в полном объеме с соблюдением необходимой последовательности решений задач.

Оценка «хорошо» ставится в том случае, если:

- в представленном отчете по самостоятельной работе допущены недочеты или ошибки в решении задач, но не более чем в 20% от всех заданий.

Оценка «удовлетворительно» ставится в том случае, если:

- самостоятельная работа выполнена не полностью, но объем правильно выполненной части более 50% от всех заданий.

Оценка «неудовлетворительно» ставится в том случае, если:

- самостоятельная работа выполнена не полностью, и объем правильно выполненной части работы менее 50% от всех предложенных заданий.

3.5 Тестовые задания

Объем и качество освоения обучающимися знаний и умений проверяются в ходе выполнения тестовых заданий в соответствии с дидактическими единицами, включающими следующие разделы (Таблица 4):

Таблица 4

№ДЕ	Наименование ДЕ
1	Раздел 1 «Механика»
2	Раздел 2 «Молекулярная физика. Термодинамика»
3	Раздел 3 «Электродинамика»
4	Раздел 4 «Колебания и волны»
5	Раздел 5 «Оптика»
6	Раздел 6 «Элементы квантовой физики»

Критерии оценки выполнения тестовых заданий

За правильный ответ на вопрос тестового задания выставляется положительная оценка - 1 балл.

За неправильный ответ на вопрос тестового задания выставляется отрицательная оценка - 0 баллов.

Шкала оценки тестовых заданий приведена в таблице 5.

Таблица 5

Процент результативности (правильных ответов на вопросы тестового задания)	Оценка уровня подготовки	
90 - 100	отлично	
75 - 89	хорошо	
60 - 74	удовлетворительно	
менее 60	неудовлетворительно	

4 Промежуточная аттестация обучающихся

4.1 Формы и методы промежуточной аттестации

Формами промежуточной аттестации сформированных компетенций (знаний и умений) по дисциплине «Физика» являются:

- аттестация по текущей успеваемости в 1 семестре;
- экзамен во 2 семестре.

4.2 Аттестация по текущей успеваемости

Объем и качество освоения обучающимися дисциплины оцениваются по результатам выполненных лабораторных работ, практических занятий, самостоятельных работ, тестирования и выставляется усредненная оценка.

4.3 Экзамен

Итоговой формой промежуточной аттестации по дисциплине является экзамен.

Формы контроля: собеседование, выполнение практического задания репродуктивного уровня.

Последовательность и условия выполнения задания:

- 1) сдать преподавателю зачетную книжку;
- 2) вытянуть билет, содержащий 2 теоретических вопроса и одно практическое задание 1 мин.;
- 3) подготовить ответ на теоретические вопросы письменно или устно, решить письменно практическое задание 39 мин.;
- 4) ответить преподавателю на теоретические вопросы, пояснить выполненное практическое задание 10 мин.

Максимальное время выполнения задания - 60 мин.

Вопросы для подготовки обучающихся к экзамену:

- 1 Физические модели: материальная точка, абсолютно твердое тело.
- 2 Перемещение, траектория, радиус-вектор, пройденный путь.
- 3 Скорость. Ускорение.
- 4 Прямолинейное равномерное движение. Уравнение прямолинейного равномерного движения.
- 5 Прямолинейное неравномерное движение. Уравнение прямолинейного неравномерного движения.

- 6 Криволинейное движение. Тангенциальное и нормальное ускорение.
- 7 Масса и вес тел. Плотность.
- 8 Сила. Законы Ньютона.
- 9 Импульс тела. Закон сохранения импульса.
- 10 Закон всемирного тяготения.
- 11 Работа в механике.
- 12 Кинетическая энергия и потенциальная энергия. Примеры потенциальных энергий.
 - 13 Закон сохранения энергии в механике.
- 14 Электрические заряды и их свойства. Взаимодействие электрических зарядов. Закон Кулона.
- 15 Электрическое поле и его характеристики: напряженность электрического поля, силовые линии, потенциал. Связь напряженности с потенциалом.
 - 16 Принцип суперпозиции электрических полей.
 - 17 Диэлектрики в электрическом поле.
 - 18 Проводники в электрическом поле. Электроемкость проводника.
 - 19 Конденсаторы. Емкость конденсатора. Соединение конденсаторов.
 - 20 Энергия электростатического поля.
 - 21 Электрический ток. Сила и плотность тока.
 - 22 Сопротивление проводников и его температурная зависимость.
 - 23 Закон Ома для однородного и неоднородного участка цепи.
 - 24 Э.д.с. Закон Ома для замкнутой цепи.
 - 25 Работа и мощность тока. Закон Джоуля Ленца.
- 26 Магнитное поле. Индукция МП. Напряженность МП. Силовые линии МП.
 - 27 Принцип суперпозиции.
 - 28 Явление электромагнитной индукции. Закон Фарадея. Правило Ленца.
 - 29 Явление самоиндукции. Индуктивность. Взаимная индукция.
 - 30 Энергия магнитного поля.
- 31 Общие сведения о колебаниях. Характеристики колебаний: амплитуда, фаза, частота, период.
 - 32 Свободные гармонические колебания.
- 33 Смещение, скорость и ускорение материальной точки при гармонических колебаниях и их графики.
 - 34 Затухающие колебания.
 - 35 Вынужденные колебания.
 - 36 Резонанс.
 - 37 Графическое изображение гармонических колебаний.
- 38 Волновой процесс. Распространение колебаний. Основные понятия волнового движения.
- 39 Звуковые волны, их характеристика, распространение в различных средах.
 - 40 Гидроакустика. Отражение и поглощение звуковых волн.
 - 41 Эффект Доплера в акустике. Звукопоглощение и звукоизоляция.

- 42 Природа акустического резонанса. Причины возникновения явления. Резонаторы. Использование явления в науке и технике. Акустический резонанс.
 - 43 Идеальный колебательный контур.
- 44 Свободные электромагнитные колебания. Зависимость частоты и периода колебаний от параметров контура.
- 45 Энергия колебательного контура. Взаимное превращение полей и энергий при колебаниях в контуре.
- 46 Затухающие электромагнитные колебания. Характеристики затухающих электромагнитных колебаний.
- 47 Вынужденные электромагнитные колебания. Переменный ток. Цепь переменного тока.
 - 48 Генерация электромагнитных волн. Свойства электромагнитных волн.
 - 49 Шкала электромагнитных волн.
 - 50 Свет как волна. Элементы геометрической и электронной оптики.
- 51 Волновые свойства света. Интерференция. Дифракция. Поляризация света.
- 52 Квантовая природа излучения и поглощения света. Постулаты Бора. Спектральный анализ.
- 53 Оптические квантовые генераторы. Принципы работы современных лазерных устройств. Определение показателя преломления с помощью интерференции.
 - 54 Изучение поляризации света с помощью закона Малюса.
- 55 Основы теории проводимости. Различные виды носителей зарядов. Свойства электронов в кристаллических проводниках и полупроводниках. Понятие о зонной теории.
- 56 Собственная и примесная проводимость полупроводников. Свойства p-n перехода.

Критерии оценки освоения

Освоенные обучающимся знания и умения по учебной дисциплине проверяются в ходе ответа на вопросы к экзамену.

Оценка «неудовлетворительно» ставится обучающемуся, не овладевшему ни одним из элементов компетенции, т.е. обнаружившему существенные пробелы в знании основного программного материала по дисциплине, допустившему принципиальные ошибки при применении теоретических знаний, которые не позволяют ему продолжить обучение или приступить к практической деятельности без дополнительной подготовки по данной дисциплине.

Оценка «удовлетворительно» ставится обучающемуся, овладевшему элементами компетенции «знать», т.е. проявившему знания основного программного материала по дисциплине в объеме, необходимом для последующего обучения и предстоящей практической деятельности, знакомому с основной рекомендованной литературой, допустившему неточности при ответе, но в основном обладающему необходимыми знаниями для их устранения при корректировке со стороны преподавателя.

Оценка «хорошо» ставится обучающемуся, овладевшему элементами компетенции «знать» и «уметь», проявившему полное знание программного материала по дисциплине, освоившему основную рекомендованную литературу, обнаружившему стабильный характер знаний и умений и способному к их самостоятельному применению и обновлению в ходе последующего обучения и практической деятельности.

Оценка *«отлично»* ставится обучающемуся, овладевшему элементами компетенции *«знать»*, *«уметь»* и *«владеть»*, проявившему всесторонние и глубокие знания программного материала по дисциплине, освоившему основную и дополнительную литературу, обнаружившему творческие способности в понимании, изложении и практическом использовании усвоенных знаний.

Литература

Учебники и учебные пособия:

- 1 Дмитриева В.Ф. Физика для профессий и специальностей технического профиля: учебник для образовательных учреждений сред. проф. образования. М., 2014.
- 2 Дмитриева В.Ф. Физика для профессий и специальностей технического профиля. Сборник задач: учеб. пособие для образовательных учреждений сред. проф. образования. М., 2014.
- 3 Дмитриева В.Ф., Васильев Л.И. Физика для профессий и специальностей технического профиля. Контрольные материалы: учеб. пособия для учреждений сред. проф. образования / В.Ф. Дмитриева, Л.И. Васильев. М., 2014.
- 4 Дмитриева В.Ф. Физика для профессий и специальностей технического профиля. Лабораторный практикум: учеб. пособия для учреждений сред. проф. образования / В.Ф. Дмитриева, А.В. Коржуев, О.В. Муртазина. М., 2015.
- 5 Дмитриева В.Ф. Физика для профессий и специальностей технического профиля: электронный учеб.-метод. комплекс для образовательных учреждений сред. проф. образования. М., 2014.
- 6 Дмитриева В.Ф. Физика для профессий и специальностей технического профиля: электронное учебное издание (интерактивное электронное приложение) для образовательных учреждений сред. проф. образования. М., 2014.
 - 7 Касьянов В.А. Иллюстрированный атлас по физике: 10 класс. М., 2010.
 - 8 Касьянов В.А. Иллюстрированный атлас по физике: 11 класс. М., 2010.
- 9 Трофимова Т.И., Фирсов А.В. Физика для профессий и специальностей технического и естественно-научного профилей: Сборник задач. М., 2013.
- 10 Трофимова Т.И., Фирсов А.В. Физика для профессий и специальностей технического и естественно-научного профилей: Решения задач. М., 2015.
 - 11 Трофимова Т.И., Фирсов А.В. Физика. Справочник. М., 2010.
- 12 Фирсов А.В. Физика для профессий и специальностей технического и естественно-научного профилей: учебник для образовательных учреждений сред. проф. образования / под ред. Т.И. Трофимовой. М., 2014.

Интернет-ресурсы:

- 1 www.fcior.edu.ru (Федеральный центр информационно-образовательных ресурсов).
 - 2 wwww.dic.academic.ru (Академик. Словари и энциклопедии).
 - 3 www.booksgid.com (BooksGid. Электронная библиотека).
- 4 www.globalteka.ru (Глобалтека. Глобальная библиотека научных ресурсов).
- 5 www.window.edu.ru (Единое окно доступа к образовательным ресурсам). www.st-books.ru (Лучшая учебная литература).
- 6 www.school.edu.ru (Российский образовательный портал. Доступность, качество, эффективность).
 - 7 www.ru/book (Электронная библиотечная система).

- 8 www.alleng.ru/edu/phys.htm (Образовательные ресурсы Интернета Физика).
- 9 www.school-collection.edu.ru (Единая коллекция цифровых образовательных ресурсов).
 - 10 https://fiz.1september.ru (Учебно-методическая газета «Физика»).
 - 11 www.n-t.ru/nl/fz (Нобелевские лауреаты по физике).
 - 12 www.nuclphys.sinp.msu.ru (Ядерная физика в Интернете).
 - 13 www.college.ru/fizika (Подготовка к ЕГЭ).
- 14 www.kvant.mccme.ru (Научно-популярный физико-математический журнал «Квант»).
- 15 www.yos.ru/natural-sciences/html (Естественно-научный журнал для молодежи «Путь в науку»).

Регистрация изменений в оценочных средствах текущего контроля и промежуточной аттестации по учебной дисциплине

№ п/п	Учебный год	Содержание изменений	Преподаватель	Решение цикловой комиссии (№ протокола, дата, подпись ПЦК)