Федеральное агентство связи

Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Уральский технический институт связи и информатики (филиал) в г. Екатеринбурге (УрТИСИ СибГУТИ)

РАБОЧАЯ ПРОГРАММА

по дисциплине «Физика»

для основной профессиональной образовательной программы по направлению 11.03.02 «Инфокоммуникационные технологии и системы связи» направленность (профиль) – Технологии и системы оптической связи квалификация – бакалавр форма обучения – очная год начала подготовки (по учебному плану) – 2020

Федеральное агентство связи

Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Уральский технический институт связи и информатики (филиал) в г. Екатеринбурге (УрТИСИ СибГУТИ)

		Утверждаю
	Директор УрТИ	СИ СибГУТИ
		Е.А. Минина
«>	>	2020 г.

РАБОЧАЯ ПРОГРАММА

по дисциплине «Физика»

для основной профессиональной образовательной программы по направлению 11.03.02 «Инфокоммуникационные технологии и системы связи» направленность (профиль) — Технологии и системы оптической связи квалификация — бакалавр форма обучения — очная год начала подготовки (по учебному плану) — 2020

Рабочая программа дисциплины «Физика» составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи» и Положением об организации и осуществления в СибГУТИ образовательной деятельности по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры.

Программу соста	вил:	G 1	
к.х.н.,	доцент	10/	/И.П. Корякова
должі		подпись	инициалы, фамилия
/	. /	,	/
долж	ность	подпись	инициалы, фамилия
*			
Утверждена н кафедры	а заседании ВМ	МиФ от 14.05.2020 ——————————————————————————————————	протокол № 9 ———
Заведующий кафе	дрой (разработчика)		/ В.Т. Куанышев/
		//подпись	инициалы, фамилия
14.05.2020	Γ.		
Заведующий кафе 14.05.2020	дрой (выпускающей ₋ г.	подпись	/ Е.А. Субботин/ инициалы, фамилия
Согласовано Ответственный по	о ОПОП (руководите	ель ОПОП)	/ Е.И. Гниломёдов / инициалы, фамилия
14.05.2020	г.		
овная и дополните иотеке института п		казанная в рабочей пр	оограмме, имеется в наличии
Зав. библиотекой		(m-	/ С.Г. Торбенко
1		подпись	инициалы, фамилия

Рабочая программа дисциплины «Физика» составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи» и Положением об организации и осуществления в СибГУТИ образовательной деятельности по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры.

K.X.	н., доцент	<u> </u>	/И.П. Корякова
Д	олжность	подпись	инициалы, фамилия
/	/		/
Д	олжность	подпись	инициалы, фамилия
Утверждена кафедры	на заседании	ВМиФ от 14.05.2020	лротокол № 9 ———
Заведующий к	афедрой (разработчі	ика)	/ В.Т. Куанышев/
14.05.2020	г.	подпись	инициалы, фамилия
14.05.2020	афедрой (выпускаю) г.	подпись	/ Е.А. Субботин/ инициалы, фамилия
Согласовано Ответственны 14.05.2020	й по ОПОП (руковод г.	цитель ОПОП) подпись	/ Е.И. Гниломёдов / инициалы, фамилия
иотеке институ	та и ЭБС.	а, указанная в рабочей п	рограмме, имеется в наличии
Зав. библиотег	кой		/ С.Г. Торбенко
		подпись	инициалы, фамилия

1. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина относится к обязательной части учебного плана. Шифр дисциплины в учебном плане – E1.0.07.

ОПК-1 - Способен использов	вать положения, законы и методы естественных наук и	
математики для решения зас	дач инженерной деятельности	
Предшествующие		
дисциплины и практики		
Дисциплины и практики,	Высшая математика, основы теории цепей	
изучаемые одновременно с		
данной дисциплиной		
Последующие дисциплины	Материалы и компоненты электронной техники, теория	
и практики электрических цепей, антенны и распространение		
	радиоволн	
ОПК-2 – Способен самост	оятельно проводить экспериментальные исследования и	
использовать основные приел	мы обработки и представления полученных данных	
Предшествующие		
дисциплины и практики		
Дисциплины и практики,	Основы теории цепей	
изучаемые одновременно с		
данной дисциплиной		
Последующие дисциплины	Материалы и компоненты электронной техники, теория	
и практики	электрических цепей, антенны и распространение	
	радиоволн	

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины обучающийся должен демонстрировать освоение следующих компетенций по дескрипторам «знания, умения, владения», соответствующие тематическим разделам дисциплины, и применимые в их последующем обучении и профессиональной деятельности:

ОПК-1 - Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности

Знать

 фундаментальные законы природы и основные физические математические законы и методы накопления, передачи и обработки информации.

Уметь

 применять физические законы и математически методы для решения задач теоретического и прикладного характера.

Владеть

- навыками использования знаний физики и математики при решении практических задач.
- OПК-2 Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных

Знать

– основные методы и средства проведения экспериментальных исследований, системы стандартизации и сертификации.

Уметь

выбирать способы и средства измерений и проводить экспериментальные.
 исследования

Владеть

 способами обработки и представления полученных данных и оценки погрешности результатов измерений.

3. ОБЪЁМ ДИСЦИПЛИНЫ

3.1 Очная форма обучения

Общая трудоемкость дисциплины, изучаемой в 1 и 2 семестрах, составляет _9_ зачетные единицы. По дисциплине предусмотрена расчетно-графическая работа и экзамены (1 и 2 семестры).

Виды учебной работы	Всего часов/зачетных	Семестр		
	единиц	1	2	
Аудиторная работа (всего)	136/3.78	68	68	
В том числе в интерактивной форме	16/0.44	8	8	
Лекции (ЛК)	52/1.44	34	18	
Лабораторные работы (ЛР)	52/1.44	18	34	
Практические занятия (ПЗ)	32/0,89	16	16	
Самостоятельная работа студентов (всего)	116/3.22	40	76	
Проработка лекций	16/0.44	8	8	
Подготовка к практическим занятиям и оформление отчетов	19/0.53	9	10	
Подготовка к лабораторным занятиям и оформление отчетов	33/0.92	9	24	
Выполнение курсовой работы	-	-	-	
Выполнение РГР	14/0.39	-	14	
Подготовка и сдача экзамена	72/2	36	36	
Общая трудоемкость дисциплины, часов	324	144	180	

Одна зачетная единица (ЗЕ) эквивалентна 36 часам.

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ

4.1 Содержание лекционных занятий

No	•	Объ	емвч	ıacax
раздела	Наименование лекционных тем (разделов) дисциплины и их			
дисцип-	содержание	O	3	3д
лины				
1	Введение	2		
2	Физические основы механики	10		
3	Основы молекулярной физики и термодинамики 4			
4	Электричество и магнетизм 10			
5	Колебания и волны 10			
6	Оптика	6		
7	Элементы атомной и квантовой физики	6		
8	Элементы физики твердого тела	2		
9	Элементы ядерной физики	2		
	ВСЕГО	52		

^{**} Оставить нужное

4.2 Содержание практических занятий

$N_{\underline{0}}$	№ раздела	Наименование практических занятий Объем				
Π/Π	дисциплины	паименование практических занятии	Ο	3	3д	
1	2	Кинематика поступательного и вращательного движения материальной точки	2			
2	2	Динамика поступательного движения материальной точки. 2 Законы Ньютона				
3	2	Механическая работа и энергия. Законы сохранения в 2 механике				
4	2	Вращательное движение твердого тела. Элементы специальной теории относительности.	ращательное движение твердого тела. Элементы 2			
5	3	Основы МКТ. Газовые законы.	1			
6	3	Первое начало термодинамики. Второе и третье начала 1 гермодинамики. Цикл Карно. Энтропия				
7		Электростатика. Закон Кулона. Электрическое поле. Методы расчета электрических полей. Конденсаторы.	2			
8	4	Постоянный электрический ток. Законы постоянного тока. 2				
9	4	Магнитное поле и его характеристики. Методы расчета 2 магнитных полей. Силы Ампера и Лоренца.				
10	4	Явление электромагнитной индукции. 2				
11	5	Механические колебания и волны.	2			
12	5	Электромагнитные колебания и волны.	2			
13	6	Интерференция и дифракция света.	2			
14	6	Поляризация и дисперсия света. Поглощение света.	1			
15	7	Законы теплового излучения. Фотоэффект. 1				
16	7	Волновая функция. Соотношение неопределенностей 4 Гейзенберга. Уравнение Шредингера.				
17	9	Закон радиоактивного распада. Ядерные реакции	2			
		ВСЕГО	32			

4.3 Содержание лабораторных занятий

	4.3 Содержание лабораторных занятий						
$N_{\underline{0}}$	№ раздела	Наименование лабораторных работ	Объем в часах				
Π/Π	дисциплины	Паименование лаоораторных раоот		3	3д		
1	2	Простейшие измерения и их обработка. Погрешности	4				
		измерения физических величин. Определение плотности					
		тел правильной формы					
2	4	Изучение контрольно-измерительных приборов.	2				
		Наблюдение и измерение периодических сигналов					
3	4	Определение емкости конденсатора	2				
4	4	Определение электродвижущей силы источника тока	2				
		методом компенсации					
5	4	Определение сопротивлений проводников методом	2				
		Уитстона					
6	4	Снятие кривой намагничивания и петли гистерезиса с	2				
		помощью осциллографа					
7	5	Сложение однонаправленных и взаимно перпендикулярных	4				
		колебаний					
8	5	Исследование свободных затухающих колебаний в	4				
		электрическом колебательном контуре					
9	6	Определение деформации поверхности тела с помощью	2				
		метода голографической интерферометрии					
10	6	Определение показателя преломления вещества с помощью	2				
		явления интерференции					
11	6	Определение радиуса кривизны линзы с помощью явления	2				
		интерференции.					
12	6	Изучение дифракции когерентного излучения в	2				
1.0		параллельных лучах					
13	6	Определение показателя преломления с помощью явления	2				
1.4		поляризации света.	2				
14	6	Поляризация света	2				
15	7	Исследование внешнего фотоэффекта	4				
16	7	Изучение рассеяния рентгеновских лучей 4					
17	7	Изучение рассеяния альфа-частиц	2				
18	7	Определение первого потенциала возбуждения атомов газа	2				
10		(опыт Франка и Герца)	4				
19	7	Изучение дифракции электронов на щели	4				
20	9	Изучение законов радиоактивного распада	2				
1		ВСЕГО	52				

5. ПЕРЕЧЕНЬ ИННОВАЦИОННЫХ ФОРМ УЧЕБНЫХ ЗАНЯТИЙ $^{ m 1}$

Преподавание дисциплины базируется на результатах научных исследований, проводимых УрТИСИ СибГУТИ, в том числе с учетом региональных особенностей

1	`		_	~	
профессиональной	$\Omega \rho g m \rho \eta h h \Omega c m h g h h h$	жкинков и потпе	กมก <i>ะ</i> เท <i>ย</i> น เ	าสกดพดศสท	ηρπριι
профессиональный	ochinesionochin ooniy	ckninkoo ii nompe	onocmen p	aoomooan	icicu

	,					
No			ем в	Вид	Используемые	
п/п	Тема	часах*		учебных	инновационные	
11/11	11/11		3	занятий	формы занятий	
1	Молекулярная физика: тепловое движение	2		Лекция	Интерактивная	
1	атомов и молекул.	4		Лекция	лекция	
2	Движение заряженных частиц в магнитном	2		Лекция	Интерактивная	
	поле	2		лскция	лекция	
3	Интерференция, дифракция, поляризация	2		Покина	Интерактивная	
3	света	2		Лекция лекция		
4.	Определение плотности тел правильной	2		Лабораторн	Работа в малых	
4.	4. формы			ая работа	группах	
5.	Определение емкости конденсатора	2		Лабораторн	Работа в малых	
5.				ая работа	группах	
	Исследование свободных затухающих	2		Лабораторн	Работа в малых	
6.	колебаний в электрическом колебательном			ая работа	группах	
	контуре.					
	Постоянный электрический ток. Законы					
7	Ома. Сопротивление проводников.	2		Практика	Мозговой штурм	
	Источники тока					
8	Динамика поступательного движения	2		Практика	Мозговой штурм	
0	материальной точки.	4		практика	тугозговой штурм	
	ВСЕГО	16				

6 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПО ДИСЦИПЛИНЕ

6.1 Список основной литературы

2. Трофимова Т. И. Курс физики : учеб. пособие для вузов / Т. И. Трофимова. - 18-е изд., стереотип.- М.: Академия, 2010.

6.2 Список дополнительной литературы

- 1. Трофимова Т.И. Физика. Справочник с примерами решения задач. М.: Издательство Юрайт, 2010 г. 448 с.
- 3. Багдасарян Д. А. Сборник задач и вопросов по электричеству и магнетизму: учеб. пособие / Д. А. Багдасарян, А. А. Сабирзянов. Екатеринбург: Изд-во УрГУ, 2007.
- 4. Яворский Б.М., Детлаф А.А., Лебедев А.К. Справочник по физике. Для инженеров и студентов вузов. Изд. 8, перераб. и испр. 2007.
- 5. Савельев И. В. Курс общей физики : в 4 т.: учеб. пособие для вузов. Т. 1. Механика. Молекулярная физика и термодинамика / И. В. Савельев. М.: КноРус, 2009.

¹ Учесть развитие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений, лидерских качеств (включая проведение интерактивных лекций, групповых дискуссий, ролевых игр, тренингов, анализ ситуаций и имитационных моделей).

- 6. Савельев И. В. Курс общей физики: в 4 т.: учеб. пособие для вузов. Т. 2. Электричество и магнетизм. Волны. Оптика / И. В. Савельев. М.: КноРус, 2009.
- 7. Савельев И. В. Курс общей физики [Текст]: в 4 т.: учеб. пособие для вузов. Т. 3. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц / И. В. Савельев.- М.: КноРус, 2009.- 368 с.
- 8. Савельев И. В. Курс общей физики: в 4 т.: учеб. пособие для вузов. Т. 4. Сборник вопросов и задач по общей физике / И. В. Савельев. М.: КноРус, 2009.

6.3 Информационное обеспечение (в т.ч. интернет- ресурсы).

- 1. Официальный сайт UISI.RU/ (дата обращения: 1.09.2015)
- 2. Единая научно-образовательная электронная среда (Е-НОЭС) УрТИСИ. http://aup.uisi.ru/ доступ по логину и паролю

7 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ И ТРЕБУЕМОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Наименование	Вид	Наименование оборудования,
аудиторий,	занятий	программного обеспечения
кабинетов,		
лабораторий		
Лекционная	Лекционные	– компьютер;
аудитория №414	занятия	компьютер,мультимедийный проектор;
аудитория №414 УК№1	киткнас	
y KJN⊻1		— экран;
		- ЖК-панель;
402	П	— доска.
Аудитория 403	Практические	Офисная мебель, доской 1-поверх. 1.0х3.0
УК №1	занятия и	(маркерная)
	самостоятельная	
	работа	
Аудитория 412	Лабораторные	Офисная мебель, маркерная доска,
УК № 1	работы	лабораторное оборудование: вольтметр В7-
		16А (8 шт.); вольтметр В6-9 (1 шт.);
		генератор ГЗ-118 (8 шт.); лаб. стенд для
		ВУЗов курс физ. магн. (8 шт.);
		осциллограф С1-83 (9 шт.)
Аудитория 410	Лабораторные	Офисная мебель, маркерная доска,
УК № 1	работы	лабораторное оборудование: модуль
		лазерного полупроводникового излучателя
		KLM-0650-9/G3 (7 шт.), источник питания
		лазера БП-2/5 (4 шт.).
Аудитория 314	Самостоятельная	Рабочие места с персональными
УК№1	работа	компьютерами. Имеется предоставление
		удалённого доступа к единой научной
		образовательной электронной среде.

8 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ $_{ m L}$ ДИСЦИПЛИНЫ $^{ m 2}$

8.1 Подготовка к лекционным, практическим и лабораторным занятиям

8.1.1 Подготовка к лекциям

На лекциях необходимо вести конспектирование учебного материала, обращать внимание на категории, формулировки, раскрывающие содержание научных явлений и процессов, научные выводы и практические рекомендации.

Конспектирование лекций — сложный вид аудиторной работы, предполагающий интенсивную умственную деятельность студента. Целесообразно сначала понять основную мысль, излагаемую лектором, а затем записать ее. Желательно оставлять поля, на которых при самостоятельной работе с конспектом можно сделать дополнительные записи и отметить непонятные вопросы.

Конспект лекции лучше подразделять на пункты в соответствии с вопросами плана лекции, предложенными преподавателем. Следует обращать внимание на акценты, выводы, которые делает лектор, отмечая наиболее важные моменты в лекционном материале.

Во время лекции можно задавать преподавателю уточняющие вопросы с целью освоения теоретических положений, разрешения спорных вопросов.

8.1.2 Подготовка к лабораторным работам

Подготовку к лабораторной работе необходимо начать с ознакомления плана и подбора рекомендуемой литературы.

Целью лабораторных работ является углубление и закрепление теоретических знаний, полученных студентами на лекциях и в процессе самостоятельного изучения учебного материала, а, следовательно, формирование у них определенных умений и навыков.

В рамках этих занятий студенты осваивают конкретные методы изучения дисциплины, обучаются экспериментальным способам анализа, умению работать с приборами и современным оборудованием. Лабораторные занятия дают наглядное представление об изучаемых явлениях и процессах, студенты осваивают постановку и ведение эксперимента, учатся умению наблюдать, оценивать полученные результаты, делать выводы и обобщения.

8.1.3 Подготовка к практическим занятиям

Подготовку к практическим занятиям следует начинать с ознакомления плана практического занятия, который отражает содержание предложенной темы. Изучение вопросов плана основывается на проработке текущего материала лекции, а затем изучении основной и дополнительной литературы. Новые понятия по изучаемой теме необходимо выучить и внести в глоссарий, который целесообразно вести с самого начала изучения курса.

Результат такой работы должен проявиться в способности студента свободно ответить на теоретические вопросы практикума, его выступлении и участии в коллективном обсуждении вопросов изучаемой темы, правильном выполнении практических заданий и контрольных работ.

8.2 Самостоятельная работа студентов

Успешное освоение компетенций, формируемых данной учебной дисциплиной, предполагает оптимальное использование времени самостоятельной работы.

Подготовка к лекционным занятиям включает выполнение всех видов заданий, рекомендованных к каждой лекции, т. е., задания выполняются еще до лекционного занятия по соответствующей теме. Целесообразно дорабатывать свой конспект лекции, делая в нем соответствующие записи из литературы, рекомендованной преподавателем и предусмотренной учебной программой.

Все задания к практическим занятиям, а также задания, вынесенные на самостоятельную работу, рекомендуется выполнять непосредственно после соответствующей темы лекционного курса, что способствует лучшему усвоению материала, позволяет своевременно выявить и устранить «пробелы» в знаниях, систематизировать ранее пройденный материал, на его основе приступить к получению новых знаний и овладению навыками.

² Целью методических указаний является обеспечение обучающимся оптимальной организации процесса изучения дисциплины.

Самостоятельная работа во внеаудиторное время состоит из:

- повторение лекционного материала;
- подготовки к практическим занятиям и лабораторным работам;
- изучения учебно-методической и научной литературы;
- изучения нормативно-правовых актов;
- решения задач, выданных на практических занятиях;
- подготовки к контрольным работам, тестированию и т. д.;
- подготовки рефератов по заданию преподавателя;
- проведение самоконтроля путем ответов на вопросы текущего контроля знаний, решения представленных в учебно-методических материалах дисциплины задач, тестов, написания рефератов и эссе по отдельным вопросам изучаемой темы.

8.3 Подготовка к промежуточной аттестации

При подготовке к промежуточной аттестации необходимо:

- внимательно изучить перечень вопросов и определить, в каких источниках находятся сведения, необходимые для ответа на них;
 - внимательно прочитать рекомендуемую литературу;
 - составить краткие конспекты ответов (планы ответов).

Освоение дисциплины предусматривает посещение лекционных занятий, выполнение и защиту лабораторных, практических работ, самостоятельной работы.

Текущий контроль достижения результатов обучения по дисциплине включает следующие процедуры:

- -контрольные работы для полусеместровой аттестации;
- -решение индивидуальных задач на практических занятиях;
- -контроль самостоятельной работы, осуществляемый на каждом лабораторном, практическом занятии;
 - -защита лабораторных работ.

Промежуточный контроль достижения результатов обучения по дисциплине проводится в следующих формах:

экзамен (1 и 2 семестры);

Для проведения текущего контроля и промежуточной аттестации используются оценочные средства, описание которых расположено в Приложении 1 и на сайте (http://www.aup.uisi.ru).

8.4 Рекомендации по работе с литературой

Целесообразно начать с изучения основной литературы в части учебников и учебных пособий. Далее рекомендуется перейти к анализу научных монографий и статей, рассматривающих отдельные аспекты проблем, изучаемых в рамках дисциплины, а также официальных интернет-ресурсов, в которых могут содержаться основные вопросы изучаемой проблемы.

При работе с литературой важно уметь:

- сопоставлять, сравнивать, классифицировать, группировать, систематизировать информацию в соответствии с определенной учебной задачей;
 - обобщать полученную информацию, оценивать прослушанное и прочитанное;
- фиксировать основное содержание сообщений; формулировать, устно и письменно, основную идею сообщения; составлять план, формулировать тезисы;
 - готовить доклады и презентации к ним;
- работать в разных режимах (индивидуально, в паре, в группе), взаимодействуя друг с другом;
 - пользоваться реферативными и справочными материалами;
- обращаться за помощью, дополнительными разъяснениями к преподавателю, другим студентам.
 - пользоваться словарями и др.